Using VA to Mitigate Airfield Funding-Shortfall Risk

By Warren Knoles, PE, AVS, Principal Value Specialist Crawford, Murphy & Tilly, Inc.

OUTLINE

- Introduction
- Airport Overview
- Project Overview
- Workshop Process
- Workshop Results
- Selected VA Proposals
- Lessons Learned
- Conclusions

INTRODUCTION

Taxiway Safety Enhancement Program (TSEP)

- Phased 5-year program
- Funding risk
 - Increased construction costs
 - Decreased out-year funding allocation

INTRODUCTION

How to Mitigate Funding Risk?

- Cost reduction options
- How, without impairing essential functions?
- Value study

Value Study Approach

 FAA Advisory Circular 150/5300-15A Use of Value Engineering for Engineering and Design of Airport Grant Projects¹:

"VE provides the funding agency and the sponsor of a project the opportunity and means of improving the project and substantially reducing costs."

- Formal VE study not in scope
- Informal, internal value study workshop

Lexington, Kentucky -- "Horse Capital of the World"

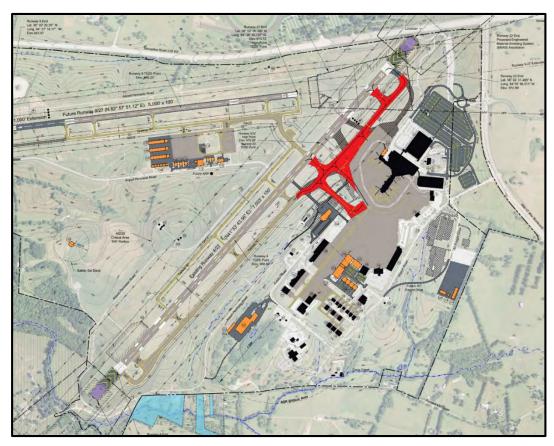
Lexington Blue Grass Airport²

Existing Airfield

- 1M+ passengers/year
- 5 major airlines
- Corporate, charter, private
- Air cargo (horses)
- One commercial runway (4/22)

Airport Design Aircraft

- FAA Design Group III
- Representative aircraft: MD-80 & B-737


Occasional Aircraft

- FAA Group V horse-industry private aircraft
- Representative aircraft: B-747 & B-777

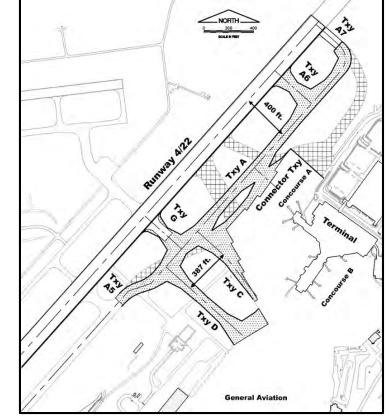
Lexington Blue Grass Airport Master Plan³

Airfield showing *Taxiway Safety Enhancement Program (TSEP)* improvements (airfield pavements in red)

Taxiway Safety Enhancement Program (TSEP)³

Airfield rendering after TSEP improvements

TSEP Project Functions


- Reduce runway incursions potential
- Reduce aircraft conflicts (head to head) potential
- Increase operational flexibility
- Increase aircraft movements separation

PROJECT OVERVIEW

TSEP Geometric Improvements

- New parallel Taxiway A 400' from Rwy. 4/22
- New Taxiway C
- New Taxiway D 387' offset from Taxiway C
- Widen existing Taxiway G
- New bypass Taxiway A6
- New Terminal A apron Connector Taxiway
- Remove existing conflicting taxiways

Design Stage:

Draft 35% design report

Workshop Scope:

- Primary airfield project elements
- Airfield building not included

Workshop Goals & Objectives:

- Develop 4-5 feasible VA proposals
- Reduce project cost by 4-5%

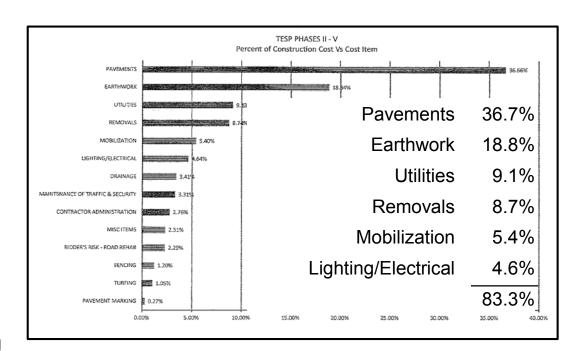
Workshop Team

- Five independent CMT subject matter experts (SMEs)
 - Airport planning
 - Airfield geometrics
 - Airfield pavements/geotechnical
 - Aviation lighting/navaids/utilities
 - Airfield operations/constructability
- One design team member for background information & administrative support
- Value study leader (SAVE-certified AVS)
- Two SMEs participated via tele-video

Information Phase

Pre-workshop information package

- Project presentation at workshop
 - Airport master plan
 - Taxiway Safety Enhancement Program
 - TSEP airfield geometric improvements



Information Phase

- Baseline cost model
 - 83% of construction cost in six items
 - 36% of construction cost: pavements
- Total baseline construction cost: \$21.6 million

Functional Analysis Phase

- Top nine cost components selected from cost model as value targets
 - A Pavements
 - B Earthwork
 - C Utilities Construction
 - D Removals
 - E Mobilization

- F Lighting/Electrical
- G Drainage
- **H MOT & Security**
- I Bidders Risk Road Rehab.

Functional Analysis Phase

- Value targets defined with active verbs and measurable nouns
- Prepared-in-advance list
- Supplemented by workshop team

Functional Analysis Phase

Value-target function examples

<u>VALUE TARGET</u> <u>VERB</u> <u>NOUN</u>

Pavements Support (Aircraft) Load

Resist Stress

Support (Aircraft) Repetitions

Reduce (Adverse) Travel

Utilities Construction Eliminate Conflicts

Maintain Service

Reduce Dispersion

VERB

Functional Analysis Phase

Value-target function examples

VALUE TARGET

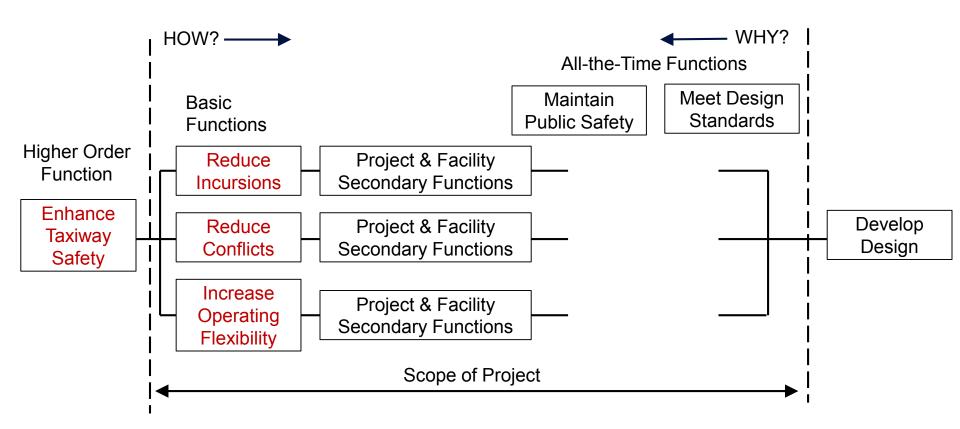
Lighting/Electrical Prevent Outages

Guide Pilot

Increase Reliability

NOUN

Security Prevent Incursions


Protect Passengers

Restrict Access

Functional Analysis Phase

- FAST Diagram prepared post-workshop
- Increases design team understanding of project functions/VA proposals

Creative Phase

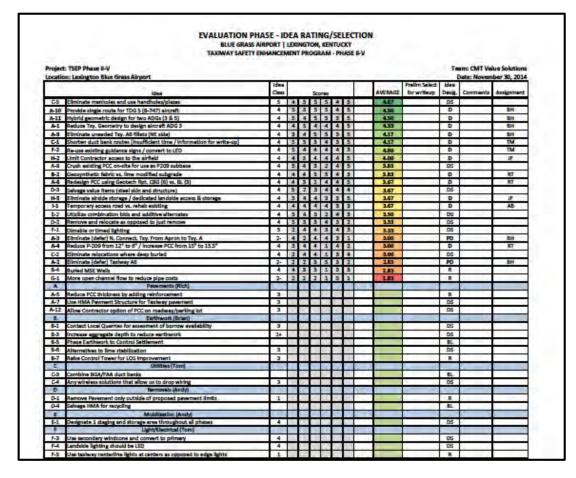
- Creative ideas brainstormed; first individually; then as a group
- Administrative-support team member recorded ideas from offsite/tele-video team members
- Ideas recorded on flip charts for each value target

Brainstorming alternative ideas

Tele-video participants

Evaluation Phase

- Team classified ideas using 9-cell matrix
- Potential VA opportunities:
 - 4 rating = same functionality;
 decrease cost
 - 5 rating = increase in functionality;
 decrease cost
- Potential deferrals:
 - 2- rating = decrease in functionality;
 decrease in cost


		PROBABLE EFFECT ON COST			
		Increase	Same	Decrease	
PROBABLE EFFECT ON FUNCTION	Increase	Requires additional funding (2+)	(4)	(5)	
EFFECT ON	Same	X (1)	Possible different approach (3)	(4)	
TOPOGO	Decrease	X (1)	X (1)	Scope deferral or elimination (2-)	

Evaluation Phase

- Ideas rated by team on 1-5 scale
 - 5 = Superior
 - 4 = Good
 - 3 = Average
 - 2 = Fair
 - 1 = Poor
- Ideas recorded on spreadsheet and sorted by rating

Development Phase

- Team developed top 9 VA proposals
- Recorded on workshop worksheets
 - Function addressed
 - Original and proposed concepts
 - Cost impacts
 - Advantages/challenges
 - Cost calculations
 - Sketches (where applicable)
- One post-workshop VA proposal ("P" label)

Team development of VA proposals

Presentation Phase

- Workshop summary prepared by facilitator
- Submitted to airport approximately two weeks following workshop
- Results presented to airport by project manager three weeks following workshop

WORKSHOP RESULTS

- Creative ideas: 52
- VA proposals:
 - During workshop
 - Post workshop <u>1</u>
 - Total 10
- Design suggestions: 27

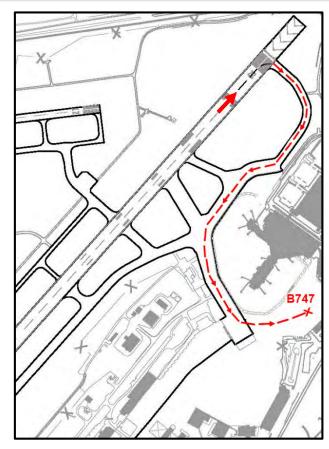
WORKSHOP RESULTS

VA Workshop Results

Cost reduction options:

VA proposals (10)

\$1,251,000 (5.8% of construction)

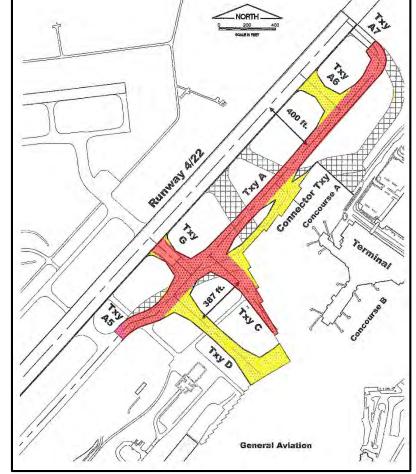

Deferral proposals (2)

\$1,424,000 (6.6% of construction)

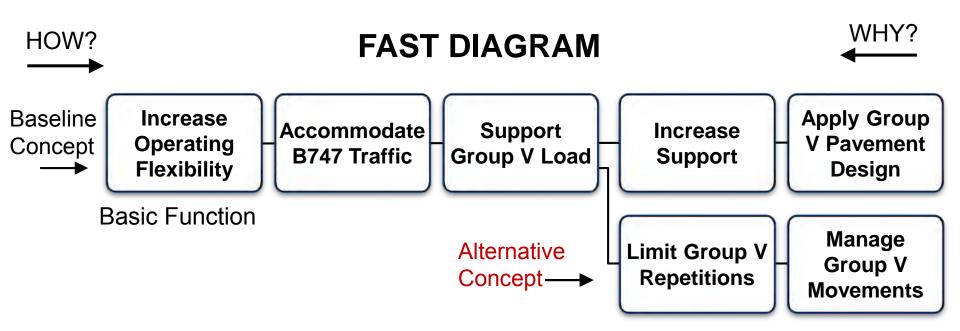
Total

\$2,675,000 (12.4% of construction)

Existing taxi route to GA parking

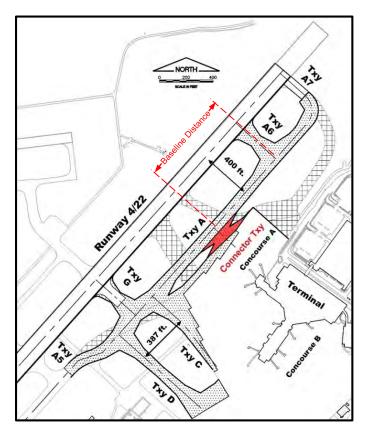

A-11 – Provide geometric design for two airplane design groups (III & V)

B-747 at GA parking apron

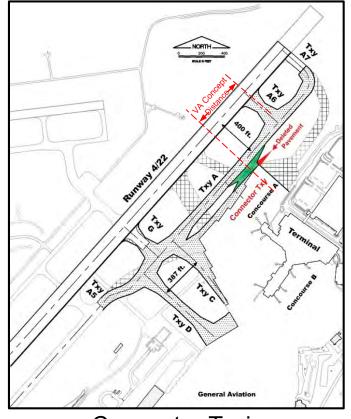

A-11 – Geometric design for two airplane design groups (III & V)

- Red pavement area: Group V
- Yellow pavement area: Group III
- Cost savings = Group V/Group III cost differential
- Cost savings = \$421,000

A-11 – Provide geometric design for two airplane design groups (III & V)

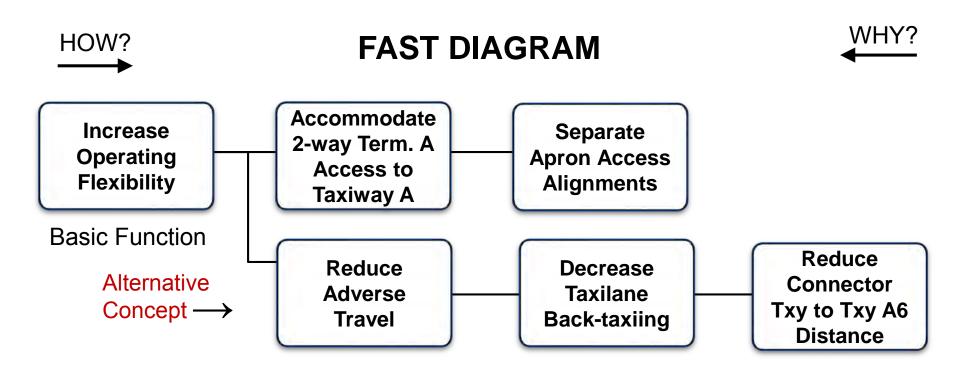


A-4 – Redesign PCC pavement using CBR (6) vs. baseline CBR (3)


- Baseline PCC design based upon past airport materials history
- VA proposal based upon in-situ materials samples
- Using extra-strength CBR 6 design value yields thinner PCC pavement
- Lower-strength CBR 3 design value (more conservative design) yields surplus function PCC for design service life (but extended service life)
- Cost savings = \$304,000

A-13P – Relocate Apron Connector Taxiway to north apron edge

Connector Taxiway (Baseline)


Connector Taxiway (VA Alternative)

A-13P – Relocate apron Connector Taxiway to north apron edge

- Provides two operational benefits
 - Runway 22 landings clear Taxiway A sooner
 - Improves aircraft operational positioning to some Concourse A gates
- Cost savings = deletion of one of four pavement fillets
- Cost savings = \$89,000

A-13P – Relocate apron Connector Taxiway to north apron edge

LESSONS LEARNED

Workshop Evaluation

Workshop team ratings (1-5 scale)	Rating
Project Information Package	4.00
Project Presentation	4.17
Workshop Job Plan	4.50
Instructions	4.67
Schedule	3.33
Facilitator	4.67
Team Members	4.67
VA Alternatives	<u>4.17</u>
OVERALL TEAM RATING	4.27

LESSONS LEARNED

Workshop Evaluation

- Workshop team feedback
 - Strongest aspects of VA workshop:
 - "Teamwork & idea creation."
 - "Brainstorming of new ideas."
 - "Function analysis."
 - "Process and independence of SMEs."
 - Workshop could have been improved in the following ways:
 - "Wished we had more time."
 - 'Position project information exhibits closer to tele-video camera."
 - "Link facilitator PC to remote-participant PCs."

LESSONS LEARNED

- Additional pre-work required for one-day workshop.
- Compression of function analysis (FA) phase possible with some pre-prepared 2-word function definitions, though workshop yield would likely increase with additional FA time.
- More of 27 design suggestions would likely have been developed into VA proposals with additional workshop time.
- Post-workshop FAST diagram can educate design team about project functions and VA concepts.
- Tele-video participants possible, though in-person preferred.

CONCLUSIONS

- VA workshop accomplished workshop goals:
 - 10 VA proposals vs. 4-5 goal
 - Cost reduction of 5-6% possible (without compromising essential functions) vs. 4-5% goal
 - Additional \$1.42 million (6.6%) deferral cost reduction available for affordability reasons
- Airport has contingency cost-reduction options to mitigate funding-shortfall risk

REFERENCES

¹Federal Aviation Administration, September 30, 2008, *Use of Value Engineering for Engineering and Design of Airport Grant Projects*, Advisory Circular AC 150/5300-15A.

²Lexington-Fayette Urban County Airport Board, Fran Taylor Editor, 2014, *Blue Grass Airport – An American Aviation Story*, 212-215, West High LLC and Lexington-Fayette Urban County Airport Board, Lexington, KY.

³Crawford, Murphy & Tilly, Inc., 2013, *Moving Forward – Airport Master Plan Update*, 15, Lexington, KY.

⁴Enlign Consultants & Advantage Facilitation Services, 2008, *Module I Basic Certification Training Workshop Workbook*, 125.

Using Value Analysis to Mitigate Airfield-Program Funding Risk

By Warren Knoles, PE, AVS Crawford, Murphy & Tilly, Inc. wknoles@cmtengr.com

2016 SAVE Value Summit Niagara Falls, Ontario, Canada June 5-7, 2016

