VAVE Applied in Electronics Contract Manufacturing Services

By:
Pierre Marquis, Project Manager, VAVE

Toronto CSVA Conference

October 28th, 2008
Agenda

- Introduction
- Sanmina-SCI Corporate & Canada Overview
- NPI and VAVE Definitions
- VAVE Concept
- VAVE Process Applied to NPI
- NPI VAVE Case Study – Image Processing System
- NPI VAVE Case Study – Battery Pack
- Re-design Case Study – Optical Circuit Card
- VAVE Case Study – Ethernet Switch M/B
- NPI Case Study in Packaging
- Conducting the VAVE Session
- Question Period
- Back-up slides: Supervisory Data Access Point Terminal
 - NEBS III Compliant HDSL Shelf
Introduction

Your Host - Pierre Marquis, Project Manager, VAVE

- Sanmina-SCI Canada since 1995
- Eng Manager
- Quality/Training Manager
- Quality/Store Manager
- Global Account NPI Manager 2001
- Project Manager since 2002
- 23 Years in Telecom Mfg, Electronics & PCB Fab
- Nortel, Bell Canada, Circo Craft, Toptech

- MBA (1999)
- B.Sc. Industrial Eng. (1985)
- VE training Feb. 1999
- VAVE Session Facilitator
- Six Sigma Black Belt (2005)
- Based in Montreal
- Member of CSVA

www.scav-csva.org
We focus on delivering the highest-level quality, technology and service to our customers.

- 27 years of operation
- $8 billion in annualized revenue
- 80+ plants in over 19 countries & 5 continents
- 13M ft.2 of manufacturing capacity
- 40,000 employees
- Market Focused Organization
- Total manufacturing solution
Sanmina-SCI Corporate Overview

Total Solution for Our Customers

World-class Infrastructure Support Services: Supply Chain Management & Global Oracle ERP
Sanmina-SCI in Canada
- Diverse solution
- Gateway to global services

Ottawa, ON
- PCB Assembly and Test / NPI Center
- System integration & test
- AS9100B Certified

Montreal, QC
- PCB Assembly and Test
- System integration & test

Toronto, ON
- Enclosure Design & Manufacturing
- System integration & test

Calgary, AB
- Design center
Sanmina-SCI Corporate Overview

End-to-End Design Engineering Services

Mechanical / Thermal Design. Enclosure “Should cost” with Boothroyd-Dewhurst

Signal Integrity

Circuit Design

DFx & VAVE Services

A Complete End-to-End Solution

Optical Design

Test Development

EMC/EMI Engineering

Reliability Testing HALT / HASS

Product Integrity / Compliance
NPI and VAVE Definitions

• **NPI**
 - Involves new Form, Fit & Function Product
 - One or many PCBAs
 - Involves EMS DFx activities
 - DFM
 - DFA
 - DFT
 - DFD
 - DFSS
 - RoHS, REACH & WEEE
 - May include enclosure (indoor or outdoor)
 - Solicits Supply Chain Planning
 - Includes Alpha & Beta Product Development Phases

• **VAVE**
 - Value Analysis Value Engineering
 - A methodology aimed at optimizing the value of a product or a process, existing or under development.
 - It ensures maximum user satisfaction at minimal cost.
DEFINITION OF VALUE

\[
\text{VALUE} = \frac{\text{SATISFACTION OF NEEDS}}{\text{COST}}
\]
VALUE OF A PRODUCT

usage functions
esteem functions
safety
reliability
maintenance
availability
comfort

development cost
design cost
manufacturing cost
operation cost
maintenance cost
disposal cost
Benefits of VE

- Increased understanding of client’s need and their relative importance
- Reduced cost
- More efficient team
The multidisciplinary team

Is composed of a representative of all

the disciplines involved in the

subject being studied
Building a team

VAVE for a Product at NPI Stage
- Accounting / Cost Prime
- Component Eng
- Design Engineers (hard. soft. electrical)
- Industrial Eng.
- Marketing / Sales
- Product / Quality Eng.
- Purchasing
- Test Eng.
- Moderator
The VAVE Job Plan: 7 phases

STEP
- Organization
- Information exchange
- Function and cost analysis
- Creativity
- Evaluation
- Development and Presentation
- Implementation and follow-up

WHEN vs SESSION
- Before
- During
- After
Step 5 - Evaluation phase

SCORE MATRIX

<table>
<thead>
<tr>
<th>Difficulty</th>
<th>Benefits</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>High</td>
<td>4</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>2</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>1</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>3</td>
</tr>
</tbody>
</table>
Joint SANM/Customer VAVE Session

MAIN PROBLEMS / FACTS
- Thermal issues with 1st proto
- Actual cost is over target by 50%
- Annual volume 1300 (yr 2)

SOLUTIONS from VAVE
- SANM proposed thermal analysis
- AVL Subs identified: $800k / yr CR
- Use vacuum forming on cover: $200k / yr CR
- PCBA re-design: 80% CR Potential (or $10M/yr)

Potential Annual Savings: $11M (Payback Period < Two Months)
NPI Case Study – Battery Pack

JOINT SANM/OEM CUSTOMER VAVE SESSION (Jan 2008)

BEFORE (12 parts)
- Three AA Batteries
- Six Clips
- Three Shrink Tubes
- Five Minutes Assy Time

AFTER (2 parts)
- One Battery Pack
- One SMT Connector
- One Minute Assy

SAVINGS
- 59%
- Consumer Product: Will Generate Annual Savings > $1M
Map and Characterize the Product’s Value Path Into Sanmina-SCI Technology: Opportunities Evaluated

- Integration Of Optical Circuit Pack Main/Child/Mezzanine Cards Into Single 11x17 PCB
- Integration Of Optical Laser Transmit & Receive Daughter Cards Into Single 9x3.5 PCB
- Alternate AVL Optical Components
- Elimination Of Connectors
- Remove Delay Component Lines, Replace With Etch
- Substitute AVL Low Cost Parts (Oscillators)
- Substitute Power Bricks For Reduced Cost
- Replacement Of Obsolete/EOL Components
- Dramatically Improve Fiber Management
- Reduce In-Process And Field Failures With 100% DFT

Before
Re-design Case Study – Optical Circuit Pack

Result:
- Integrated seven PCBAs into three
- Substantially improved thermal performance
- Provided base platform for product family reuse
- Six month elapsed time: concept – engineering - NPI to volume release

Total Redesign Manufacture Cost Savings Exceeded 30%, per add/ drop pair!
Profit Margin Measured At Sales Increased By 18% Per Add / 22% Per Drop
Joint Sanmina-SCI / Telecom Customer VAVE Session

Protos Completed & Approved within 6 Months
 - Affected 15 parts on a Internet Switch Assy
 - Introduced Two New Memory IC AVL: 42% CR
 - Eliminated Three Temperature Sensors: 60% CR
 - Eliminated 4 unused connectors (over 15): 27% CR
 - Introduced a new Heat Sink AVL: 65% CR
 - Re-designed ship box packaging: 15% CR + Product Quality Improved

NREs: $20K

Annual Savings Realized: $1.75M (Payback < One Month)
NPI Case Study in Packaging

SANMINA-SCI Proposal on 1U Chassis Packaging re-design

ACTUAL DESIGN
Actual packaging consisting of:
- 1x outer box, RSC 200BC, kraft, printed 1 color
- 3x anti-static polyethylene foam end caps inserts

NEW DESIGN
Proposal packaging consisting of:
- 1x outer box, FOL 275C, kraft, printed 1 color
- 1x die-cut corrugated, 275BC, kraft, insert
- 1 ESD bag (not shown on picture)

Prices (based on annual usage of 25k, 2000 per production – FOB Guad)

TOTAL
- ACTUAL DESIGN: $7.40/kit
- NEW DESIGN: $5.19/kit (-30%)

Shipping Box Size
- ACTUAL DESIGN: 20 1/8 x 4 7/8 x 19 3/4 in (1.12 cu.ft)
- NEW DESIGN: 18 1/4 x 2 7/8 x 19 1/2 in (0.59 cu.ft) (-47% volume)

Other Advantages
- Less warehousing space if shipped flat
- Reduced logistics costs for Customer
OVERVIEW of VAVE Process (26 wk)

- **Select VAVE candidates & Define scope;**
 - Week 1-2
- **Establish Team Members (Customer & SANM);**
 - Week 1-2
- **Prepare & distribute preliminary information**
 - Week 3
 - Costed BOMs, AVLs, product flow chart, labor content
- **Conduct VAVE session (one or two days);**
 - Week 4
 - Establish cost by function, brainstorm on CR ideas
- **Produce VAVE report for follow-up**
- **Follow-up on CR ideas - weekly conf. Calls;**
 - Week 5-11
- **Write business case & Approve in SANM;**
 - Week 12
- **Present business case to customer for approval;**
 - Week 13-14
 - Obtain P.O. for NREs (if applicable)
- **Produce FPEs & Perform tests (ICT, FCT, PI, etc);**
 - Week 15-23
- **Implement design documentation changes**
 - Week 24-26
Conduct VAVE Session (1 day)

- Introduction & Session Goal by animator;
- Presentation of PCBA (or enclosure) functions by customer designer;
- Presentation of mfg flow, labor times & quality issues by product eng;
- Presentation of major cost components by cost prime;
- Discussion on functions of major components & their worth, with customer designer;
- Brainstorm on CR ideas, capture of ideas by animator;
- Screening of ideas captured by team (score matrix);
- Do an action plan, including delegation of responsibilities;
 - Use of SANM, Excel forms developed for VAVE sessions
- Establish a schedule for follow-up (e.g. regular conf calls).
CONCLUSION

- VAVE allows SANM’s customers to increase their client’s satisfaction, while reducing cost
- VAVE at Design & NPI stages ensures best ROI
- VAVE is indispensable in our global and competitive business environment
QUESTIONS ?
MERCI !
THANK YOU !

REFERENCES
Source: Nguyen-Parrot
Lucie Parrot, ing. CVS
Techniques of Value Analysis and Engineering (3rd edition)
By Lawrence D. Miles
NPI Case Studies

Supervisory Data Access Point Terminal and NEBS III Compliant HDSL
Supervisory Data Access Point Terminal Case Study

<table>
<thead>
<tr>
<th>DCR IDEA</th>
<th>Risk</th>
<th>Mitigation</th>
<th>Change HW</th>
<th>Change SW</th>
<th>PCB Spin</th>
<th>Value</th>
<th>$ Unit Est. CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing Redesign</td>
<td>Low</td>
<td>Model & Prototype</td>
<td>Yes – I/O Plate</td>
<td>NA</td>
<td>NA</td>
<td>5 - 8%</td>
<td>1 - 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes – Minor Tool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaging</td>
<td>Low</td>
<td>Model & Prototype</td>
<td>Yes – Box/Inserts</td>
<td>No</td>
<td>NA</td>
<td>10 - 20%</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Power Supply External Brick</td>
<td>Low-Med</td>
<td>Supply Chain</td>
<td>Yes – AVL BOM</td>
<td>No</td>
<td>NA</td>
<td>5 - 10%</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Prox Reader PCBA</td>
<td>Low-Med</td>
<td>Design DFx & Prototype</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>25 - 30%</td>
<td>12 - 15</td>
</tr>
<tr>
<td>Display Assembly</td>
<td>Low</td>
<td>Supply Chain</td>
<td>Yes – Minor</td>
<td>No</td>
<td>No</td>
<td>10 - 15%</td>
<td>4 - 6</td>
</tr>
<tr>
<td>32 MEG SDRAMM</td>
<td>Low-Med</td>
<td>Design DFx & Prototype</td>
<td>Yes – Minor</td>
<td>No</td>
<td>Yes</td>
<td>40 - 60%</td>
<td>5 - 8</td>
</tr>
<tr>
<td>BOM AVL Suppliers</td>
<td>Low</td>
<td>Component Certification Quality Testing</td>
<td>No – Crosses Yes - Substitutes</td>
<td>No</td>
<td>Yes</td>
<td>5 – 10%</td>
<td>7 - 13</td>
</tr>
<tr>
<td>Retarget FPGA</td>
<td>Med</td>
<td>Component Engineering & Certification Testing</td>
<td>Yes – Substitutes</td>
<td>No</td>
<td>Yes</td>
<td>5 – 10%</td>
<td>8 - 13</td>
</tr>
<tr>
<td>SODIMM</td>
<td>Low-Med</td>
<td>Redesign Based On BOM Rev</td>
<td>Yes</td>
<td>No – FW Possible</td>
<td>Yes</td>
<td>25 – 35 %</td>
<td>6 - 8</td>
</tr>
</tbody>
</table>

Annual Cost Reduction

$1.8 M - $2.8 M Range

Based On EAU = 40K

Unit Cost Reduction

$45 - $70 Range (15-25%)

ROI = One Business Quarter
NEBS III Compliant HDSL Case Study

Telecom Customer Issues
- Sub-standard Thermal Performance
- High Cost
- Reliability

Solution: Shelf Construction
- Three major structural elements
- Unstressed backplane
- Precision fit and alignment

Solution: Shelf Construction
- Minimal mechanical fasteners
- Mating attachment features avoids shear stress failure and eliminates gasketing
- Common LH/RH parts
- Formex Plastic sheets
Fully integrated NEBS III Compliant HDSL Shelf

- Sheetmetal enclosure (SANM Calgary Design, includes Thermal)
- High density Midplane – no cables required (SANM Salem Design)
- PCB/PCBA
- Cooling module
- Dual high current PIMs
- Material CR of 40%, Labor CR of 7%